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Efficient FDTD method for analysis of mushroom-
structure based left-handed materials

W.-Y. Wu, A. Lai, C.-W. Kuo, K.M.K.H. Leong and T. Itoh

Abstract: A finite-difference time-domain method, combined with thin-wire and thin-slot algor-
ithms, which is used to analyse a metamaterial based on periodic mushroom structures, is proposed.
This proposed method is suitable for analysing problems involving large structures with fine
structural details. Several composite right/left handed (CRLH) metamaterial mushroom-based
structures are investigated. A 19 � 8 flat lens and a parabolic lens structure composed of 410
unit mushroom cells are investigated and they demonstrate negative-refractive-index character-
istics while operating in the LH region. The simulation and measurement results of one- and two-
dimensional CRLH mushroom-based structures are compared. The periodic analysis for mushroom
structures is also introduced. Only a single unit mushroom cell is required to present the phenomena
of infinite periodicity with periodic boundary conditions.
1 Introduction

The main characteristics of left-handed material (LHM) [1]
are negative permeability and permittivity (m , 0, 1 , 0)
simultaneously; thus the direction of phase propagation and
the direction of the Poynting vector are anti-parallel. An
LHM is also called negative-refractive-index (NRI)
medium and not commonly found in nature. Accordingly,
this material is often realised using periodic structures with
unit-cells designed to provide LHM characteristics. The per-
iodic structure based on mushroom-like unit cells is one
example of an LHM [2–7]. It consists of a periodic arrange-
ment of square metal patches each connected by a via from
the centre of the patch to the ground plane. These mushroom-
like structures have been shown to behave as composite
right/left handed (CRLH) metamaterials, and exhibit LH
properties at low frequencies and right-handed (RH) proper-
ties at high frequencies. Because this type of LHM is based
on periodicity, it is most common to analyse it using periodic
structure analysis methods. Since these methods assume the
existence of an infinite structure, details such as interfacing
with other media and mode excitation are difficult to
explore. Therefore examination of a finite structure may
prove necessary. LHM structures are often designed having
a unit cell which is considerably small in terms of wave-
length but a large collection of unit cells must be examined
to see the total LHM effect. This presents a difficulty in
performing full-wave analysis of LHM structures.

Several researchers have proposed several methods to
analyse complex CRLH structures, for example equivalent
circuit method [3, 8], transmission-line theory [7] or effec-
tive media method [4, 9, 10]. All of these methods rely on
circuit models and approximations of the structure rather
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than the full structure itself. This is done to save compu-
tational time and resources. In this paper, we combine the
finite-difference time-domain method (FDTD) [11] with
thin wire [12, 13] and thin-slot techniques [14, 15] to simu-
late mushroom structures. The motivation for using the
FDTD method to model the mushroom structures is that
the transient behaviours of the structure can be straightfor-
wardly obtained. For structures simulated in this paper, a
huge computational resource is required if uniform discreti-
sation is applied throughout the whole computational
domain without any approximation. Non-uniform gridding
may alleviate this problem with the caveat that the largest
and smallest grid sizes should not differ too much,
because strong spurious reflection might occur between adja-
cent grids of different sizes. The advantage of our approach
is that the spatial increments (Dx, Dy, Dz) are not limited to
the minimum structural details of the simulated structures,
and consequently the computational resources can be
saved greatly. This paper will discuss the proposed FDTD
analysis method as well as provide some comparisons
between this simulation method and measured results.

2 Explanation of FDTD algorithm for analysis
of 1D linear four-cell mushroom structure

Since Yee’s FDTD method is an explicit time stepping
scheme, restricted by the Courant–Friedrich–Levy (CFL)
stability condition [12]. Accordingly, very fine spatial and
temporal increments are required when the method is
applied to problems with very fine structural details that
are a small fraction of the shortest wavelength within the
frequency band of interest. Using these very fine spatial
and temporal increments leads to excessively large
number of time steps and mesh grids, which in turn
lengthens the computation time. The spatial increments in
our proposed FDTD method are not limited to the
minimum structural details of the simulated structures
due to the use of thin wire and thin-slot algorithms; thus
the computer burden can be reduced by increasing the
value of spatial increments. Although enlarging spatial
increments will increase the numerical dispersion error,
IET Microw. Antennas Propag., 2007, 1, (1), pp. 100–107
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usage of computer memory and simulation time are reduced
greatly.

For example in the 2D case, if Dx and Dy are doubled,
then the consumption of computer memory reduces to 1/4
and Dt can be increased by a factor of two due to the
looser restriction of stability criterion. The overall effect
of the increase of Dx and Dy is an acceleration of the simu-
lation speed to eight times. Therefore huge periodic struc-
tures can be simulated more efficiently, and the choice of
spatial increment depends only on acceptable dispersion
error, not the minimum size of the simulated structures.

The LHM structures considered in this paper are based on
1D or 2D lattices of mushroom structure unit cells. Fig. 1
shows a 1D linear four-cell mushroom structure connected
with two short microstrip lines as the input/output ports.
In Fig. 1, the coupling of the top patch to the adjacent
patches provides the LH capacitance, whereas the via con-
necting the top patch to the ground plane provides the LH
inductance. The gap width and via radius are very small
compared to the size of the unit mushroom. Given these
conditions, the thin-wire and thin-slot algorithms are incor-
porated into the FDTD method to avoid discretisation of
fine structural details and to save computational time.

The thin wire algorithm [12] is based on quasi-static
assumption of the field distributions. If there is a thin wire
placed along z-direction and the radius of the thin wire is
very smaller than FDTD spatial increment (Dx or Dy),
general discretisation method is hard to model this problem.
A quasi-static assumption assumes that the looping magnetic
and radial electric fields nearest to the wire vary with 1/r,
where r is the radial distance from the centre of the wire. In
this approach, only the FDTD updating equations of looping
magnetic components immediately adjacent to the wire
need to be modified. According to Faraday’s law, the FDTD
updating equation of Hy component immediately adjacent to
the wire can be derived as
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where a is the radius of the wire; i, j, k are the coordinate
indexes of the wire; k may vary with the length of wire.
Other three looping H components also must be modified.

The thin-slot algorithm is proposed by Gilbert and
Holland [14]. This algorithm approximates the thin-slot
effect by calculating the effective capacitance between
two adjacent PEC plates. According to Gkatzianas et al.
[15], the in-cell capacitance is evaluated as
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where D is the spatial increment which is parallel to PEC
plates and perpendicular to thin-slot; w is half the width
of the thin-slot. The effective relative permittivity derived
from the in-cell capacitance is given by

1r;eff ¼ 1þ
Cin- cell

10

ð3Þ

This approach is one of the simplest and most efficient thin-
slot models for FDTD applications. It straightforwardly
replaces original medium by effective medium to approxi-
mate the thin-slot effect.
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The two algorithms mentioned earlier are not used for
applications which require high accuracy. Their main
purpose is to provide acceptable answers with large compu-
tational savings. For the linear four-cell mushroom structure
case, at least 50 grids per unit cell along the y-direction are
required if uniform discretisation is employed. In our simu-
lation, only 9 grids are used to discretise a unit mushroom
cell. Comparisons of the numerical and measurement data
for the S-parameters are shown in Fig. 2.

Notice that the highest frequency of our simulation is
10 GHz which corresponds to a shortest wavelength

Fig. 2 S-parameter of the mushroom structure of Fig. 1
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Fig. 1 Mushroom structure

a Linear four-cell unit
b A unit cell
p ¼ 5 mm, g ¼ 0.1 mm, h ¼ 1.27 mm, via radius ¼ 0.12 mm,
1r ¼ 10.2
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(lmin) of 3 cm. The size of the spatial increments (Dx, Dy) is
chosen to be lmin/54, thus providing very good accuracy
[16]; the temporal increments (Dt) is chosen to satisfy the
FDTD stability condition. A wideband Gaussian pulse is
applied to be the waveform of excitation source. It was
determined that 50 thousand time steps are required to
obtain a smooth frequency response since the magnitude
of time-domain response becomes very small at later time
steps and can be ignored in the calculation of the Fourier
transformation. Perfectly matched layer (PML) [17] absorb-
ing boundary conditions (ABCs) are used to absorb the
radiation fields and simulate open space. In Fig. 2, the
lowest four resonance frequencies belong to the LH
region; the next four higher resonance frequencies belong
to the RH region. The simulation and measurement results
show similar trend and each resonance frequency matches
well. Nevertheless, the conductor and dielectric losses are
not considered in FDTD simulations, which may be the
reason of magnitude difference between the results of
simulation and measurement.

3 Calculation of dispersion diagram
for mushroom structure LHM

3.1 Dispersion diagram calculation using periodic
boundary condition

FDTD method used to analyse periodic structures, for
example frequency selective surfaces (FSSs), can be
performed well by the technique of periodic boundary
conditions (PBCs) in the time domain formulation, since
utilising PBCs to model periodic structures only needs to
discretise and simulate one single unit cell [18, 19]. For
this reason, use of the thin-wire and thin-slot algorithms is
not necessary in this PBCs’ simulation. In this section, a
phase shift PBC based on Floquet theory incorporated
with FDTD is proposed to obtain the mushroom structure’s
dispersion diagram. According to the 1D Floquet theory

wðx; yþ yp; zÞ ¼ wðx; y; zÞ expð�jky � ypÞ ð4Þ

where w can be any electric or magnetic fields; yp is the
length of unit period in y-axis; ky is propagation constant
in y-axis.

Equation (4) is also illustrated with Fig. 3. In Fig. 3, there
are two PBCs placed at y ¼ 0 and y ¼ yp, respectively. The
field components along each PBC differ only by a phase-
shift term exp(2jky

. yp), which makes all field components
in FDTD a complex number. The FDTD updating equations

Fig. 3 Illustration of PBC
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near the PBC at y ¼ 0 should be modified to
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where Hxc is the real part of Hx, and Hxs is the imaginary
part of Hx. By the similar calculation, the FDTD updating
equations near PBC at y ¼ yp are
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In this work, all field components are limited to be real
numbers; the sine/cosine method is therefore applied to
split all field components into real and imaginary parts
and then calculated, respectively. On the basis of this
method, two separate simulation spaces with sin(vt) and
cos(vt) time dependence excitations are used, moreover,
the PBCs of these two spaces are related. While PBCs are
placed at x ¼ 0 and x ¼ xp, the updating equations can be
also obtained in the same manner.

Fig. 4 shows a 3D unit-cell mushroom structure for per-
iodic analysis. In Fig. 4a, two pairs of PBCs surround a
square patch placed on the x—y plane. In Fig. 4b, a
square wire is placed along the z-direction and then con-
nected to the centre of patch and the ground plane; a
PML is used to terminate the open space in the top
z-direction. An Ez component is excited inside the substrate;
a wideband Gaussian pulse multiplied by sin(vt) and
cos(vt) time harmonic functions is used to be the excitation
waveform in the simulation spaces of real and imaginary
parts, respectively. An observation point is chosen to
record time-domain field response and then transform to
frequency-domain response by Fourier’s transformation.
The electromagnetic (EM) wave reflection and transmission
behaviours in periodical arrangement structures are caused
by the PBCs; this simulation therefore requires only one
IET Microw. Antennas Propag., Vol. 1, No. 1, February 2007
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unit-cell of periodic structures to perform infinite period-
icity. While a wideband input signal is used, only the
energy corresponding to the frequencies of propagation
modes can survive in PBCs’ simulation, however, the
energy corresponding to other frequencies decays very
fast. The values of PBCs’ propagation constants kx and ky

to indicate certain point on the axis of the Brillouin
diagram are chosen, and then the resonant frequencies cor-
responding to the different propagation modes can be
observed from the frequency-domain response of the obser-
vation point. By changing the value of propagation con-
stants continuously, the resonant modes are recorded and
represented in Fig. 5. In Fig. 5, the G, X and M represent
the points (kx xp ¼ ky yp ¼ 0), (kx xp ¼ p, ky yp ¼ 0) and
(kx xp ¼ ky yp ¼ p), respectively. The circular symbols
(LH) in Fig. 5 show that the mushroom structure supports
a backward wave, since the sign of vp and vg are opposite.
Moreover, the diamond symbols (RH) show a forward
wave due to the same sign of vp and vg. In the frequency
range between LH and RH region, b becomes imaginary,
and therefore a stopband is present. Where b is small
enough, the LH mode will couple to the air mode, and
also the EM wave is no longer concentrated in the substrate.

3.2 Dispersion diagram calculation using
S-parameters

The extraction of the S-parameters of the structure can be
directly used in the calculation of the structure’s dispersion
characteristics. The Brillouin diagram from G to X can be
obtained by calculating the propagation constant of an infi-
nite structure along one of the principle axis (x or y for iso-
tropic structure). This is done by using a 1D four-cell row of
mushroom structures and using perfectly magnetic conduc-
tor (PMC) walls placed along both sides of the row of unit
cells. This is equivalent to a structure with infinite number

Fig. 4 Unit cell mushroom structure for periodic analysis

a Top view
b Side view
l ¼ 4.8 mm, g ¼ 0.1 mm, h ¼ 1.27 mm, r ¼ 0.24 mm, 1r ¼ 10.2
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Fig. 5 Dispersion diagram of mushroom structure calculated by
PBCs
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of unit cells in the x-direction, with kx ¼ 0. By finding the
propagation constant in the y-direction, the Brillouin
diagram from G to X can be obtained. Two PMCs are
spaced out 5 mm apart to preserve 2D symmetry and
placed at both sides of the 1D linear four-cell mushroom
structure along the y-direction. To simplify this simulation,
the input and output microstrip lines are assumed very small
and well impedance matched; the reflection wave is there-
fore ignored in the following calculation. The incident
voltage in port1 and the voltage in port2 can be written as

vincð f Þ ¼ Vincð f Þe�jbð f ÞyS ð9aÞ

vLð f Þ ¼ VLð f Þe�jbð f ÞyL ð9bÞ

where b( f ) is the propagation constant of CRLH trans-
mission line; yS and yL are the location of port1 and port2.

The Brillouin diagram form G to X can be regarded as a
phase shift from one side of the unit cell to another side. The
phase of S21 already contains the phase shift from port1 to
port2, which can be obtained as

S21 ¼
vLð f Þ

vincð f Þ
¼ S21

�� ��e�jbð f Þ�ðyL�yS Þ

¼ S21

�� ��e�jbð f Þ�ð4pþ2lÞ
ð10Þ

where p is the length of a unit mushroom cell, and l is the
length of the microstrip line connected to the input and
output of mushroom structure. The length l should be
small enough to not greatly interfere with the CRLH
mode. The phase shift of a unit cell is derived as

PhasejUnitcell¼
Phase S21

��
whole circuit

� �
� Phase S21

��
MSL

� �	 

4

ð11Þ

The solid line of dispersion diagram in Fig. 5 plots the result
from the phase of S-parameter. The thin-wire and thin-slot
algorithms are applied to simulate this structure. This result
can be used to verify with PBCs’ result and shows a good
agreement. The direct calculation of phase shift indicates
an easy and fast way to obtain a dispersion diagram from G
to X. It is worth noting that the results calculated from the
phase of S-parameter present the propagation characteristic
of traveling wave inside the planar circuit, but do not
exhibit air line coupling because of a single mode (single
b) assumption. For the frequency region of LH, the LH
mode is much stronger than the air mode inside the substrate,
only the LH mode can therefore be observed.

4 17 by 17-cell square mushroom structure

Although study of infinite 2D LHMs is important, simu-
lation of a finite size structure is also essential. FDTD com-
bined with thin-wire and thin-slot techniques can calculate
mushroom structures very efficiently, especially for 2D
structures. To demonstrate this concept, the measured and
simulated results showing input impedance and near-field
phase are compared. Fig. 6 shows a fabricated LHM using
17 by 17-cell mushroom structures. The centre mushroom
is fed with a coaxial line. For analysis using FDTD, each
mushroom cell is discretised to a 9 � 9 grid in FDTD.
The size of Dx and Dy is lmin/54 for the highest frequency
(10 GHz); the size of Dz is a quarter thickness of the sub-
strate. A total of 154 � 154 � 16 FDTD grids have been
used, and 150 thousand time steps are required for stable
frequency responses. All calculations in this paper are
103
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done on 2.4-GHz Intel Pentium 4 CPU. Nine hours is
required for running this simulation.

The comparison of the S11-parameter of the 17 by 17-cell
mushroom structure is shown in Fig. 7. The S11 results of
simulation and measurement show similar trend when the
mushroom structure is extended from one dimension to two
dimensions. Differences may occur due to fabrication imper-
fections and imperfections of the absorbing material used to
terminate the test structure. Near-field measurements were
done using the experimental measurement setup shown in
Fig. 8. A vertically oriented probe controlled by a mechanical
stage and an Agilent 8510C network analyser is used to
measure the electric field 2.0 mm atop the structure. Figs. 9
and 10 show the phase of the simulated and measured
electric-field distributions, respectively. Four frequencies
were chosen in the LH region, and similar phase patterns
between simulation and measurement can be observed. By
increasing the operational frequency, the wavelength of the
electric field also increases because of the LH characteristics
shown in Fig. 5. By applying the proposed algorithm to this
17 by 17 mushroom structure, the computation time speeds
up about 90 times (spatial requirement reduces 25 times,
and temporal requirement reduces 3.6 times) compared
with that using only uniform discretisation.

5 Modeling of LH lenses

5.1 Interface between RH and LH mediums

Due to the NRI characteristics of the LHM, the EM waves
travelling through the interface between an LHM and a

Fig. 6 17 by 17-cell square mushroom structure
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Fig. 7 S-parameter of the mushroom structure of Fig. 6
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right-handed material (RHM) having positive refractive
index will experience reversal of Snell’s law. Therefore a
concave RHM-based lens diverges radiation whereas a
concave LHM-based lens converges radiation when inter-
faced with an RH region. The interface between LH and
RH mediums is required to be conic (parabolic, elliptic or
hyperbolic) to converge or diverge EM waves. This conic
interface can be obtained by optical path length technique
[20]. In the case of an NRI medium, a parabolic interface
is required to focus a planar wave. In addition, a flat inter-
face is able to refocus a point source for an NRI medium
as a direct result of Snell’s law. The advantage of
LHM-based lenses is that the LH medium can be matched
with the RH medium while 2nLH ¼ nRH; thus all incident
EM waves are allowed to pass through the LH/RH interface
without reflections. In this section, the CRLH mushroom
structures are used to construct the LHM-based lenses,
and then the RH/LH matching method can be realised by
the dispersion diagram of Fig. 5. In Fig. 5, the cross point
of two curves (LH mode and dielectric line) expresses
that the RH/LH interface is phase-matched and occurs
around 3.6 GHz. At this phase-matched operation, the RH
region has a refractive index of 3.2, whereas the CRLH
region has a refractive index of 23.2. A flat lens and a

Fig. 8 Measurement setup of Fig. 6

Fig. 9 FDTD simulation results of E-Field distribution of a 17 by
17 mushroom structure

a 3.35 GHz
b 3.5 GHz
c 3.7 GHz
d 3.9 GHz
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parabolic lens consisting of mushroom structures are
studied in the next sections.

5.2 Flat lens

The proposed FDTD method is used to simulate a flat
LHM/RHM lens. Fig. 11 shows the schematic of the flat
LHM-based lens, which is placed between two parallel
plate waveguides (PPWs) and consists of 8 by 19
mushroom-structure unit cells. An excitation line source is
placed inside the PPW and 20 mm away from the flat lens
interface. Each mushroom cell and material is chosen to
have the same value as the previous cases. A total of
172 � 163 � 12 FDTD grids have been used, and 150 thou-
sand time steps are required for stable frequency responses.
The complex frequency shifted (CFS) [21, 22] PML is
necessary to be applied in this complex case because the
CFS-PML can absorb evanescent waves efficiently with
long time signatures. Fig. 12 is the Ez (z is the vertical direc-
tion) field distribution inside the substrate in the frequency
domain. Focusing is observed at 3.68 GHz, which is close to
the expected focusing frequency of 3.6 GHz. As shown in

Fig. 10 Measurement results of E-Field distribution of a 17 by
17 mushroom structure

a 3.35 GHz
b 3.5 GHz
c 3.7 GHz
d 3.9 GHz

Fig. 11 Flat lens
IET Microw. Antennas Propag., Vol. 1, No. 1, February 2007
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Fig. 12 Ez-field distribution of flat lens

Fig. 13 Parabolic lens

Fig. 14 FDTD simulations

a E-field magnitude
b E-field phase

Fig. 15 Measurements

a E-field magnitude
b E-field phase
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106
Fig. 12, high field focusing in the middle of the LHM flat
lens as well as a refocus were observed in the second PPW.

5.3 Parabolic lens

Fig. 13 shows the simulation schematic of a parabolic
LHM-based lens consisting of 410 mushroom unit-cell
structures. An excitation line source is placed inside the
PPW and 32.5 mm away from the parabolic interface, corre-
sponding to the parabola’s geometric focal point. A PMC
wall is placed at the centre of the structure to reduce it to a
half simulation space. A total 126 � 220 � 16 FDTD grids
have been used, and 150 thousand time steps are calculated.
The CFS-PML is also necessary for this case. The equation
of parabolic interface is given by x2 ¼ 4 cy, where
c ¼ 30 mm is the geometric focus of the parabola. Fig. 14
is the Ez-field distribution above the substrate when the
frequency is 3.77 GHz.

A parabolic LHM-based lens structure was also fabri-
cated and tested based on the schematic in Fig. 13.
Fig. 15 shows the measurement results in the area corre-
sponding to the dashed-line region in Fig. 13 at a frequency
of 3.77 GHz. In both simulation and measurement, a planar
wavefront is observed in the LHM. These results reveal the
ability of wave transformation by an LHM-based lens from

Fig. 16 Time-domain Ez-field distribution of parabolic lens

a Time steps ¼ 1000
b Time steps ¼ 2000
c Time steps ¼ 3000
d Time steps ¼ 4000
e Time steps ¼ 5000
f Time steps ¼ 6000
Authorized licensed use limited to: IEEE Xplore. Downloaded on April 20, 2009 at 
cylindrical waves to planar waves. The locations of the
mushroom structure and PPW are exchanged to show
clearer planar wave propagations in Fig. 16. Fig. 16 exhibits
the time-domain field distributions of the parabolic lens
inside the substrate. A sinusoidal waveform is applied as
the excitation source. With the increase of time steps, the
planar waves in PPW are generated by the RH/LH
interface.

6 Conclusion

In this paper, an FDTD method with thin-wire and thin-
slot algorithms is proposed and was used to efficiently
simulate huge periodic structures. Simulation results
using this method were compared to measurement
results of an NRI flat lens and parabolic lens based on
CRLH mushroom-structure unit cells. Both results show
clear LH propagation characteristics at the expected
frequency. The PBCs have been utilised to characterise
infinite 2D mushroom structures by simulating a single
unit mushroom cell. The calculation of the phase of
S-parameter can be used to verify with PBCs’ result for
1D mushroom structures. Comparisons of numerical and
experimental results demonstrate the good reliability of
the proposed method.
IET Microw. Antennas Propag., Vol. 1, No. 1, February 2007
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