

Chapter 3: ULSI Manufacturing Technology - (e) Chemical Mechanical Planarization

Reference

- 1. Semiconductor Manufacturing Technology : Michael Quirk and Julian Serda (2001)
- 2. 國家矽導計畫-教育部晶片法商學程教材 (2004)
- 3. Semiconductor Physics and Devices- Basic Principles(3/e) : Donald A. Neamen (2003)
- 4. Semiconductor Devices Physics and Technology (2/e) : S. M. Sze (2002)
- 5. ULSI Technology: C. Y. Chang, S. M. Sze (1996)

Polish

Polish Bay in a Sub-micron Wafer Fab

Wafer Process Flow with CMP

Qualitative Definitions of Planarization

Multilayer Metallization with Non-planarized and Planarized Surfaces

Non-planarized IC product

2005 SOC設計概論 中山電機系 黃義佑

Planarized IC product 5

Tranditional Planarization

Etchback Planarization 2. BPSG Reflow Planarization
Spin On film with Etchback

3)

high features at a faster rate than low features. 中山電機系 黃義佑

Spin On film with Etchback (partial planarization)

Chemical Mechanical Planarization (CMP)

adequate for deep submicron ICs (global planarization)

measurement

Degree of planarization:

$$DP(\%) = (1 - \frac{SH_{post}}{SH_{pre}}) \times 100$$

SH: Distance between the maximum and minimum step heights

2005 SOC設計概論 中山電機系 黃義佑

measurement

Wafer Measurements for Degree of Planarization 7

Advantages of CMP

Benefits		Remarks
1.	Planarization	Achieves global planarization.
2.	Planarize different materials	Wide range of wafer surfaces can be planarized.
3.	Planarize multi-material	Useful for planarizing multiple materials during the same
	surfaces	polish step.
4	Reduce severe topography	Reduces topography to allow for fabrication with tighter
<u> </u>		design rules and additional interconnection levels.
5.	Alternative method of metal patterning	Provides an alternate means of patterning metal (e.g.,
		Damascene process), eliminating the need of the plasma
	patterning	etching for difficult-to-etch metals and alloys.
6.	Improved metal step	Improves metal step coverage due to reduction in
	coverage	topography.
7	Increased IC reliability	Contributes to increasing IC reliability, speed and yield
/.		(lower defect density) of sub-0.5µm devices and circuits.
8.	Reduce defects	CMP is a subtractive process and can remove surface
		defects.
9.	No hazardous gases	Does not use hazardous gases common in dry etch process.

2005 SOC設計概論 中山電機系 黃義佑

	Disadvantages	Remarks
1.	New technology	CMP is a new technology for wafer planarization. There is relatively poor control over the process variables with a narrow process latitude.
2.	New defects	New types of defects from CMP can affect die yield. These defects become more critical for sub-0.25 µm feature sizes.
3.	Need for additional process development	CMP requires additional process development for process control and metrology. An example is the endpoint of CMP is difficult to control for a desired thickness.
4.	Cost of ownership is high	CMP is expensive to operate because of costly equipment and consumables. CMP process materials require high maintenance and frequent replacement of chemicals and parts.

CMP Mechanism: Oxide Polish

- (1) A chemical reaction by the slurry chemistry forms a wafer surface layer that is relatively easy to remove
- (2) This reacted surface layer is mechanically removed by the slurry abrasive component and the applied pressure and relative velocity of a polishing pad.

Mechanism for Metal CMP

- (1) Chemical oxidation mechanism: the slurry comes in contact with the metal surface and oxidizes it.
- (2) Mechanical abrasion mechanism: the metal oxide layer is then removed by mechanical abrasion from the particles in the slurry.

CMP Tool

CMP Polishing Pad

中山電機系 黃義佑