
 

 

 

  

Abstract—The article presents an optimization method of 

combustion process in a power boiler. Immune Inspired 

Optimizer SILO is used to minimize CO and NOx emission. 

This solution is implemented in each of three units of Ostroleka 

Power Plant (Poland) and in the Newton Power Plant (USA). 

The result from the second SILO implementation in Newton 

Power Plant is presented. The results confirm that this solution 

is effective and usable in practice and it can be a good 

alternative to MPC controllers. 

I. INTRODUCTION 

The optimization of power boilers is one of the most 

common topics in research and in implementation projects in 

energetic industry applications. The large number of power 

plants, the complex problems of their optimization and 

significant economic impact results in this topic being 

discussed in many scientific papers and articles ([1]-[4]) 

The energetic boiler is a complex installation, with a large 

number of control variables. The combustion process in a 

power boiler is a dynamic non-linear process characterized 

by long response time, cased by process inertia and transport 

delay. It is hard to control such a process using only classical 

control algorithms (i.e.: PID controllers [5]).   

In this article we present  SILO – a new method of 

combustion process optimization, inspired by the immune 

system of living creatures. The main features of the 

presented solution are: 

• continuous learning and adaptation 

• low implementation cost (in comparison to MPC 

controllers)  

NOx and CO emission reduction, raising of the boiler 

efficiency and steam temperatures symmetrization are the 

typical goals in combustion process optimization.  A diagram 

of a power boiler and the control signals, disturbance signals 

and process outputs forming its combustion process control 

is shown in Fig. 1.  
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Fig. 1.  Diagram of a power boiler and its signals. 

II. MPC APPROACH 

MPC controllers are a well proven solution to combustion 

process optimization problems. The optimization algorithm 

in a MPC controller is based on a dynamic model of the 

combustion process. The optimal control vector  is the 

control vector in consecutive moments 

MV(i),MV(i+1),...,MV(i+L-1) which minimize difference 

between estimated process’s outputs and demand output 

values in consecutive moments. Moreover an optimized 

quality indicator includes a penalty for a control signals 

values change, which ensures lower energy consumption and 

lower device wear. For more information about MPC 

controllers please refer to [6]-[9].  

The implementation of optimizations systems has been 

undertaken by several companies - NeuCO (USA), Pavillion 

(USA), Pegasus (USA), Transition Technologies (Poland). 

Most of the implementations bring positive results. Usually 

NOx emission is reduced by 10-30 % (there are different 

results on different types of boilers and on different boiler’s 

load range). Boiler efficiency is improved by 0.1-0.8 % 

(lower oxygen level in exhaust fumes, lower CO emission 

and lower exhaust fumes temperature). Below we present 

some results from the installation of MPC controllers 

performed by Transition Technologies company in 

cooperation with Emerson Process Management.   
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Fig. 2.  Typical results for 650 MW unit with corner burners (Ameren’s 

Power Plant, USA, 2002),   trend graphic in control system; red color – 

NOx emission showing optimization system enabled and disabled 

(horizontal line shows emission limit); blue color -CO emission. 

 

 

Fig. 3.  Long term confirmation of NOx minimization results (6 month 

summary – 275 MW unit in Joppa Power Plant in USA. yellow triangles – 

NOx emmision before modernization, blue rhombus – after tuning classic 

control systems, blue squares – results after MPC controller installation) 

 

In spite of the numerous advantages of MPC controllers, 

this approach has two basic disadvantages:  

• Implementation of MPC controller is expensive. 

Engineers have to have precise knowledge about the 

combustion process to create a dynamic 

mathematical model. In practice engineers have to 

perform long-lasting and labour-consuming 

parametric tests. While computer cost is low, the 

cost of the highly qualified engineers is a significant 

load for power plant budget. Moreover some test 

scenarios can cause the boiler to work inefficiently. 

In some types of plants, there is no possibility to 

perform tests on all boiler configurations. 

• Dynamic model has to be periodically updated 

because of changes in the characteristics of boiler 

devices or a change in fuel parameters. 

There is no possibility to eliminate those disadvantages 

using standard methods. This motivates us to search for new 

techniques.  It seems that the SILO system, which is a 

stochastic optimizer inspired by artificial immune system 

theory, is a good method to solve such problem. 

III. BIOLOGICAL AND ARTIFICIAL IMMUNE SYSTEMS 

Dąbrowski in [10] noticed, that immune system, like the 

nervous system, is a particular structure, which is able to 

gather and develop skills during learning and testing process. 

Moreover this system has memory. It can develop new or 

lost old abilities, according to external conditions. The 

immune system’s features mentioned by Dąbrowski come in 

useful when solving diverse technical problems. 

The main goal of the immune system is to protect 

organism against the pathogens. The term pathogens means 

viruses, bacteria, parasites and other microorganisms, which 

are dangerous for the living organism. Therefore the immune 

system has to properly detect and effectively eliminate 

pathogens. Pathogens have antigens, which induce an 

immune response. Antigens are detected by detectors – 

lymphocytes, whose structure represents directly the 

knowledge of the immune system. There are two types of 

lymphocytes in the immune system - B cells and T cells. In 

our article we will concentrate on the B cells and Th cells 

(sub-group of T cells). Each B cell could have a different 

combination of tools to destroy pathogens. Thus 

lymphocytes could have varying levels of effectiveness in 

fighting with particular sort of pathogens. Indeed those tools 

are the antibodies, which are produced by B cells ([11] - 

[13]). New B cells are created in bone marrow without the 

stimulation of antigens or during the clonal selection process, 

when they are created by antigen stimulation [13]. 

Continuous learning is a characteristic feature of the 

immune system. This process is connected with the so-called 

primary response ([11], [14]). It’s the organism’s reaction to 

new, unknown pathogen.  The primary response of the 

immune system is usually slow. The system needs time to 

eliminate an unknown pathogen. It should be noticed that 

information about a pathogen is remembered after a 

successful defense action. It causes the organism's reaction to 

be faster and more effective to a pathogen’s renewed attack. 

It is a secondary response ([11], [14]) which testifies to the 

adaptability of the immune system. 

Nowadays knowledge about the immune system is the 

base for artificial immune systems theory. This theory 

inspires the construction of efficient information processing 

systems, which are able to learn continuously and adapt to 

new environments. 

IV. PROBLEM REPRESENTATION 

In this chapter the representation of the combustion 

process optimization problem in the context of immune 

systems will be described. The structure of the immune 

inspired optimizer SILO will be compared with the real 

immune system. 
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A. Pathogen 

 
a) Pathogen representation 

 

 

 

b) Antibody representation 

 

 

Fig. 4.  Pathogen and antibody representation. 
 

The pathogen represents the disturbances (measured and 

non-measured), which effect the work of the boiler. In some 

points this approach is similar to the idea of Krishnakumar 

and Neidhoefer ([15] – [18]). They also represent system 

disturbances as an antigen. 

The pathogen is recognized by the antibody thanks to the 

epitopes, which are located on the pathogen's surface. Thus 

epitopes present the pathogen to the immune system. In the 

case of the combustion process, the influence of the 

disturbance is expressed through actual process state ({CV, 

DV, MV} vector) changes. Thus in the SILO system, 

pathogen represent disturbance and pathogen is presented to 

the immune system in the form of the process state. 

B. Antibody 

Antibodies are created by B cells. The task of antibody is 

to bind the antigen. Each antibody is able to recognize only 

one sort of epitope. The antibody consist of an antigen 

binding part and an effector part [19]. 

In the SILO system the antibody effector part is a vector 

of MV points' increments, which minimize indicator (1). 

Thus setting new control vector to the object should 

compensate the influence of the disturbance on combustion 

process. This approach is similar to that proposed by Fukuda 

([15], [20]). He also treats best solution vector as an 

antibody. 

There are many propositions for defining antibody binding 

strength (lymphocyte affinity). The measure to calculate 

lymphocytes’ affinity is determined by lymphocyte’s 

representation ([14]). In most optimization problems affinity 

is evaluated with the use of optimized quality indicator [21]. 

In SILO a different solution is proposed. We assume that 

antibody binds antigen only when actual process points' 

values are similar to process points' values stored in B cell, 

which creates an antibody. A set of process points can be 

limited to those points which represent disturbances. In the 

case when process characteristics are strongly non-linear it is 

also possible to compare actual (antigen) and previous 

(antibody) values of MV and CV points. One should notice, 

that if previous and actual MV, DV and CV vectors are 

similar, then elements of previous and actual XV (non-

measured disturbances) vector are also similar. This 

correlation has a simple explanation. If XV vectors are 

distinctly different, then process response {CV} for the same 

input signals {MV, DV} will be different. Thus lymphocytes 

will represent different pathogens. Therefore information of 

rarely or non-measured disturbances is indirectly taken into 

consideration while evaluating affinity level. 

C.  Lymphocyte - B cell and Th cell 

 

 

Fig. 5.  B cell representation 

 

B cells produces certain types of antibodies. B cells also 

take part in the immune memory creation process. When an 

antibody, which is located on the surface of the B cell, binds 

the antigen, then the pathogen is presented on the surface of 

the lymphocyte in the context of MHC class II particle. 

When Th cell recognizes the presented antigen, then it 

activates B cell to intensive proliferation and differentiation 

(clonal selection mechanism). 

In the SILO system the B cell represents process state 
before and after a control change. Each pair process state 
and object’s outputs response to control variables’ change 
represents one B cell. One should notice that the B cell 
represents the situation only when the process disturbances 
are constant. 

 

 

Fig. 6  B cell example 

The 14th International Conference on Intelligent System Applications to Power Systems, ISAP 2007 November 4 - 8, 2007, Kaohsiung, Taiwan

580



 

 

 

 

TABLE I 

B CELL EXAMPLE 
 

 

Points 

 

 

MV: Oxygen level 

MV: Left damper level 

MV: Right damper level 

DV: Boiler load 

CV: NOx emission 

CV: CO emission  

      Average 

values 

before 

MV 

jump 

2.0 

10.0 

20.0 

200.0 

500.0 

80.0  

      Average 

values 

after 

MV 

jump 

2.2 

10.0 

30.0 

200.0 

520.0 

10.0  

 

Value 

increase 

 

 

0.2 

0.0 

10.0 

0.0 

20.0 

-70.0  

 

Antigen presentation on the surface of the B cell, consists 

of actual process state and MV points (input) influence on 

CV points values (output). Th cell takes a decision about B 

cell activation, based on indicator (1).  

V. OPTIMIZATION ALGORITHM 

The immune optimizer minimizes quality indicator 

presented below ([22] – [23]): 

( )[ ]∑
=

−⋅+−⋅=
N

k

kkkkkklk spapKbspapKaJ
1

2
)()(        (1) 

where: 

 

N total number of points from MV and CV group. 

apk current value of k-th point 

spk set point value for k-th point 

ak weight for the Linear Penalty Coefficient for k-th 

point from MV or CV group 

bk weight for the Square Penalty Coefficient for k-th 

point from MV or CV group 

Kl linear insensitivity zone operator 

Kk square insensitivity zone operator 

 

The layers of the optimization algorithm are shown in 
Fig. 7.  Function of each layer is described below. 

 
 

Fig. 7.  Optimizer layers 

A. Layer 1 - direct application of lymphocyte 

In this layer only one B cell is activated from the group of 

all lymphocytes, which fulfill the affinity condition (which 

binds the actual antigen – refer chapter IV-B). This B cell 

has antibodies (MV increments) which cause the biggest 

drop of the indicator (1). In other words, in this layer only 

one control vector increment (antibody) is chosen (from the 

set of the B cells stored in data base, which represent a 

similar process state), being the one which results in the most 

desired change in process outputs in the context of the 

quality indicator (1). 

If the solution found in this layer turns out unsuccessful, 

the program is switched to layer 2 or 3. 

B. Layer 2 – Optimization on the mixed model 

In the second layer all B cells, which fulfill affinity 

conditions (refer chapter IV-B) are activated. An incremental 

linear mathematical model is automatically constructed 

based on those B cells. This is the so-called local model. 

This model represent MV vector increment’s influence on 

CV vector increment: 

∆CV = K · ∆MV , 

where K is the gain matrix. Local model is constructed only 

on the basis of B cells which represent similar process states. 

Thus the local model is constructed in the locality of the 

actual working point, so the linear model is sufficient. 

In this layer the global model is also constructed. The 

form of the global model is the same as the local model. The 

global model is automatically constructed on the basis of all 

B cells stored in immune memory. Local and global models 

are mixed with different weights. The global model is used 

only to improve the robustness of SILO. In the case of 

strongly nonlinear processes the global model can be 

disabled in layer 2.  

The quality indicator (1) is minimized based on the linear, 

mixed model. The optimal control vector is set to the boiler. 

It causes the creation of a new B cell, which is then saved in 

the immune memory. 

When the mixed model is constructed, before performing 

optimization on the model, some of the elements of the MV 

vector are blocked with certain probability. Blocked control 

variables are fixed, and the dimension of the optimization 

task is reduced. It causes mutation in the new B cell (new 

control vector, which is the result of the optimization). 

C. Layer 3 – Optimization on the global model 

The third layer is similar to the second layer. In the third 

layer only the global model is constructed, but the 

optimization method is the same. The third layer is activated 

when the immune memory is too small to build a local model 

(initial stage of SILO operation or system is attacked by 

unregistered disturbance).  

If the solution found in this layers turns out unsuccessful, 

the program is switched to layer 4. 


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D. Layer 4 - random optimization 

During the initial stage of program operation the immune 

memory is relatively small and it frequently happens that the 

system is attacked by unregistered pathogens. In this layer 

random movements of MV vector elements are performed. 

Those movements (micro-tests) are performed in the locality 

of the actual working point. 

Apart from generating new lymphocytes, thanks to 

applying special heuristic, this layer also causes a reduction 

in the quality indicator (1). If a movement of a selected MV 

vector element caused an improvement of the quality 

indicator (1) then the direction of this movement is 

remembered and the next movement is performed in the 

same direction (e.g..: increase damper opening). If the 

quality indicator (1) is worse after performing a movement, 

then the direction of the movement is reversed. Only one 

movement on one MV point  is performed at a time. This 

point is randomly selected from the group of all MV points 

every time. 

After defined number of movements the program is 

choosing the best MV points configuration obtained in Layer 

4. Then the program is switched to Layer 1. 

E. Innate immune system 

Thanks to the innate immune system the body is born with 

the ability to recognize certain pathogens and immediately 

destroy them [12]. After SILO installation, and before 

launching the program, the user can define some defense 

scenarios, against the attacks of some well known pathogens. 

Below we presented one examples of such defense scenario: 

• If the coal mill is turned off (an element of the DV 

vector), then the boiler dampers related to this mill 

must be closed (an elements of the MV vector); 

VI. LEARNING MODULE 

 
Fig. 8.  General idea of SILO 

 

The learning module is responsible for storing a B cells in 

the immune memory. This module analysis actual and 

historical process’s points values in search of time windows 

which fulfill the criteria of being a B cell (constant 

disturbance, control vector change). This module is fully 

independent from the optimization module. The learning 

module is able to find and store B cells: 

• which were created by SILO’s optimization module, 

• which were created as the result of the intervention 

of the boiler operator, 

• on the basis of the file, which contain process’s 

historical data (batch learning). 

During boiler operation new B cells are created all the 

time. The learning module saves them in immune memory, 

and they are used in first, second and third layer of the 

optimization algorithm (refer Fig. 8). Thus the knowledge 

about the combustion process is continuously updated and 

used in the optimization algorithm. Thanks to this ability 

SILO is able to quickly adapt to boiler changes. 

VII. RESULTS FROM NEWTON POWER STATION 

SILO was implemented on each of three units in Ostroleka 

Power Plant (Poland, max. unit load 240 MW) and on first 

unit in Newton Power Plant (USA, max. unit load 615 MW). 

Results from Ostroleka Power Plant was presented in [23]. 

In this article the second implementation of SILO in 

Newton Power Plant is presented. Results from first SILO 

implementation in Newton Power Plant and the comparison 

between results obtained by SILO and MPC controller are 

presented in [24]. 

 SILO goals in Newton Power Plant was to minimize NOx 

emission and keep average CO emission below 400 PPM. 

 
TABLE IV 

MV, DV AND CV VECTORS 

 
 

SILO configuration parameters were tuned in three days after 

SILO installation in Newton Power Plant. Initial learning 

process took another four days.  One week after installation, 

three on/off tests was performed. The results of these tests 

are presented (one test per day). 
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Fig. 9.  NOx emission results in Newton Power Plant 

 

At the maximum load SILO decreases average NOx 

emission by 12,4 %, and never exceeds the CO emission 

limit set by the Power Plant management. 

Analysis of SILO operation in Ostroleka Power Station 

and in Newton Power Plant, allows us to formulate the 

following conclusions: 

• SILO is able to continuously control the combustion 

process. SILO was turned off only in the case of 

failure of the coal mills. 

• SILO is able to effectively react to disturbance 

changes without operator intervention.  

• SILO distinctly reduces NOx and CO emission 

without deterioration of boiler efficiency and super-

heat steam temperature. 

VIII. CONCLUSIONS 

In this article we present SILO – immune inspired solution 

for combustion process optimization. Main goal of this 

solution is optimization of power station’s variable costs, 

achieved by combustion process optimization, especially by 

CO and NOx emission minimization. In comparison to 

standard MPC controllers, the main advantages of this 

solution are presented below: 

• it decreases implementation costs by reducing the 

time involvement of highly qualified engineers 

(there is no need to build complex models after 

SILO installation – static models are automatically 

constructed); 

• on-line learning and adaptation to new environment. 

The main SILO disadvantage (in comparison to MPC 

controllers) is that it doesn’t use dynamic model of the 

process. This is why this solution is not sufficient for mostly 

regulating units. The SILO system is a good and cheap 

alternative to MPC controllers in case of  units, which keep 

steady load in a long periods of time (for example: base load 

units). 
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