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Abstract—This paper presents a full-wave spectral-domain
analysis to investigate compensation of a variety of microstrip
discontinuities including open-ends, bends and T junctions. To
properly model the discontinuities with miters as well as 90°
corners, vector-valued triangular subdomain functions are used
as both expansion and testing functions in the moment method
procedure. Special consideration is given to the numerical
treatment of the reaction integral between two triangular sub-
domains such that rather complicated geometrical configura-
tions can be handled very efficiently. Comparison of some nu-
merical results with available experimental data show? excellent
agreement. The losses due to radiation and surface waves for
some discontinuities are also included.

1. INTRODUCTION

IN THE design of microwave and millimeter wave cir-
cuits, compensation of microstrip discontinuities is

widely used to reduce the effects of discontinuity reac-
tance [1], [2]. For low frequency applications, planar
waveguide models have been successfully applied for
compensation of some discontinuities such as steps, right-
angle bends and T junctions [3], [4]. At higher frequen-
cies, a dynamic model based on a full-wave analysis is
required to take into account more physical effects such
as radiation and surface-wave losses. The most rigorous
full-wave method for the characterization of open rnicro-
strip discontinuities is governed by the well-known elec-
tric field integral equation (EFIE), which can be formu-
lated in both the space domain [5], [6] and spectral domain
[7]-[1 1]. In the space domain, the dyadic kernel in the
EFIE is the Green’s function for the electric field which
can be obtained from a Sommerfeld-type integral. Since
the kernel is highly singular, the evaluation of the reaction
integrals in the moment method procedure is difficult when
the observation point is within the integration range. The
mixed potential integral equation (MPIE), which is a
modification of the EFIE, is usually solved in the space
domain [12], [13]. ‘In comparison with the EFIE in the
space domain, the kernel in the MPIE is less singular,
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which makes the evaluation of reaction integrals more nu-
merically simple and stable for two near-by elements.

The spectral-domain analysis performs an integral
transformation, usually Fourier or Hankel transforms, to
transform a partial differential equation into an ordinary
differential equation. After satisfying the boundary con-
ditions at the interfaces of multi-layer stratified dielectric
medium, this alpproach can lead to a closed-form expres-
sion for the so called spectral-domain dyadic Green’s
function. The space-domain electromagnetic fields can be
expressed as the inverse Fourier transform of the vector
product of this spectral-domain dyadic Green’s function
and Fourier transform of the microstrip currents. Sucli an
EFIE formulation in the spectral domain has several ad-
vantages over the other two space-domain analyses. One
advantage is that the integration path may be chosen to
avoid singularities, thus yielding a smoothly varying in-
tegrand. A second advantage is the opportunity to inde-
pendently determine both radiation and surface-wave
losses [14]. One can compute the impedance matrix in the
method of moments very accurately using the spectral-
domain forfnuli~tion such that the circuit parameters in a
micro strip junction can be rigorously determined.

A review of past work using full-wave spectral-domain
analysis for open microstrip discontinuities reveals that
the technique cleveloped up to now is limited to a multi-
port junction whose shape can be divided into a number
of rectangles. The most commonly used expansion func-
tions, pulse and piecewise sinusoidal functions, are ap-
propriate only for modeling a discontinuity with 90° cor-
ners. To model the discontinuities with miters at any
angle, vector-valued triangular subdomain functions are
adopted in this analysis as both expansion and testing
functions in the moment method procedure. These trian-
gular subdomain functions were apparently first employed
by Rae, Wilton and Glisson [15]. They are suitable for
modeling electric currents on arbitrary PEC surfaces.
However, the present application will restrict the surface
patches to lie in the plane of discontinuities. Since a spec-
tral-domain approach is employed in the characterization
of microstrip discontinuities, the Fourier transform of the
triangular subdomain function has to be derived. This re-
sults in a very complicated mathematical expression. Crh -
cial to the numerical formulation is the efficient compu-
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tation of the reaction integrals associated with these
triangular subdomains to avoid tremendous computation
time. An efficient method to improve numerical efficiency
is to employ a space-domain technique for the asymptotic
solution of the spectral-domain reaction integral [16],
[17].

H. SPECTRAL-DOMAIN MATRIX FORMULATION

A. Electric Field Integral Equation

Consider a microstrip structure where the electric cur-
rent distribution is viewed in terms of a number of infin-
itesimal dipoles continuously distributed on the interface
between the dielectric and the air. From linear superpo-
sition, the tangential electric field on the interface can be
expressed by a two-dimensional spatial convolution of the
dyadic Green’s function with the current distribution.
Each component of this two-dimensional spatial convo-
lution corresponds to multiplication of the two-dimen-
sional Fourier transforms in the spectral domain. There-
fore, the space-domain tangential electric field can be
expressed as an inverse Fourier transform of the vector
product of the spectral-domain dyadic Green’s function
and the Fourier transform of the microstrip currents. An
EFIE can be obtained by imposing the boundary condition
that the total tangential field is zero on the conductors:

mm

Et(x, y) = -& H ~(k, ky) “ ~ (kX, ky)e-Jkx’
—m —m

. e-JkYy dkx dky + ~inc (X, Y) = 0,

for x, y on microstnps (1)

=
where G and ~ are the spectral-domain dyadic Green’s
function and the current distribution, respectively. The
closed-form expression of the spectral-domain dyadic
Green’s function [18] takes into account all the physical

phenomena including radiation and surface waves. & is
an impressed electric field used to model a voltage source
on a microstripline.

B. Triangular Subdomain Functions

The triangular subdomain functions as shown in Fig. 1
are vector-valued functions defined as

jn(x, y)

[

*[(X –xJf + (y
n

x, y in T;

Y3)~l ,

Y)~19 (2)

(0, otherwise

where T: and T; denote the domains of two adjacent
triangles with areas A ~ and A; respectively. Fig. 1 also

\ (q,y,)

boundary edge
..,.,,
...........

....

(z,, y,)
(X4,y,)

Fig. 1. Triangular subdomain function.

shows a microstrip discontinuity of arbitrary shape on a
substrate with permittivity e, and substrate thickness h.
The discontinuity is inscribed with non-overlapping tri-
angles defined in terms of an appropriate set of vertices,
faces, interior edges and boundary edges. The nth expan-

sion function ( ~,1) is uniquely associated with a pair of
adjacent triangles sharing a common edge (interior edge)
whose length is 1.. The current on microstrip may be ex-
panded as

N

7(x, y) = ~~1In jn(x, y) (3)

where N is the total number of the interior edges and 1.
are unknown coefficients to be obtained through the
method of moments. This basis function has two salient
properties which make it uniquely suited to approximate
electric surface currents on microstrip discontinuities of
arbitrary shape [15]:

1. The current has no component normal to the bound-
ary edge.

2. The component of current normal to the rzth interior
edge is constant and continuous across the edge.

This triangular subdomain function basically consists of
a pair of linearly varying functions with triangular support
whose Fourier transform has been derived recently in [19],
[20]. In this paper, we define the Fourier transform of a
triangular subdomain function as

.-

!!
?. (k.> k,) = _m _m ~. (x, y) e ‘k-”eJk’Yd dy. (4)

C. Galerkin ’s Procedure

After substituting the expanded current expression (3)
and the Fourier transform of expansion functions (4) into
(l), the method of moments can be applied to convert this
integral equation into a matrix equation. The testing func-
tions in the moment method procedure are also chosen to
be triangular subdomain functions. As a result, the matrix
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equation for a microstrip discontinuity is generally for-
mulated as

[z] Arxjy[z]~ = [v]&’. ‘ (5)

Each matrix element in [Z] represents the reaction be-
tween two basis functions. The computation of each ele-
ment requires a double infinite integration in the spectral
domain:

!1“=
Z,a,, = —

41r2 -m
[G(k.,, k,) “ ;. (k,, $Jl

. ~; (kx, k,) dkl dky (6)

where the superscript * represents the complex conjugate
of the function. In (5), the right-hand side matrix repre-
sents an excitation mechanism for the microstrip junction.
In this analysis, an ideal delta-gap voltage source is placed
near the end of a finite length of microstripline to excite
the dominant mode. We can think of this source as a con-
centrated slot electric field where the slot or gap is cut
along the edges of the triangular patches. The detailed
mathematical formulation of the excitation elements can
be found in [21].

For general applications, each microstrip junction is as-
sumed to be connected to finite lengths of microstriplines.
Triangular subdomain functions are used exclusively to
expand the electric surface current density on the junction
as well as the microstriplines. Once the current distribu-
tion along the microstriplines is obtained from the solu-
tion of the matrix equation, the scattering parameters of
the junction can be further extracted from knowledge of
this current distribution and the propagation constant of
the dominant mode [6]. Empirically, each microstripline
needs to be longer than a half guided wavelength to yield
accurate results.

III. NUMERICAL EVALUATION OF MATRIX ELEMENTS

A. Integration in Polar Coordinates

After transforming into polar coordinates, the double
infinite integration in (6) is carried out numerically. We
reduce the integration to a finite integral (O to 27r) with
respect to an angular variable 0 = tan-1 (ky/k.J and an
infinite integral (O to m) with respect to a radial variable

h = -: For the finite integral; since the integrand
is well behaved over the angular domain, a 16 to 32 point
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Gaussian quadrature formula can be used depending on
the distance bet ween the expansion and testing functions.
For the infinite integral, the integrand containing the
Fourier transforms of the triangular subdomain expansion
and testing functions is mathematically complex and con-
verges slowly. Computation of impedance matrix ele-
ments involving triangular subdomains takes approxi-
mately 4 times the CPU time when compared to the
integrand using pulse or piecewise sinusoidal functions in
modeling the dliscontinuities with 900 corners. An effi-
cient method to perform the integration is to apply an
asymptotic extraction technique [16]. This technique
breaks the double infinite integral into two integrals. One
is the asymptotic integral (denoted by Z:,l) where the

leading term of the asymptotic expansion of ~ as h + m
is used in the integrand. The other is the difference inte-
gral (denot~d by Z:.) where subtraction of this leading
term from G is used in the integrand. After a slight ar-
rangement, it is fou~d that the leading term of the asymp-
totic expansion of ~ is asymptotically equivalent to the
dyadic Green’s function in a homogeneous medium with
the dielectric constant equal to the average of the dielec-
tric constants immediately above and below the source
points. As a result, both integrals can be mathematically
expressed as follows:

-z,,,.= -am+ z.>

where

–jcdpo 1

[

k; – k: –tk.ky=
G(kl, ky) = —

k; A. + Air coth A,rh –kxky k; – k; 1

–jcquo AIJ(E,– 1) [.1k;kxky
+—

kj (h. + A,r coth Acrlz)(eJo + A,r timh &h) k,k,, k;

(7)

(8)

(9)

(lo)

(11)

(12)
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6,+1
~h=—

2’
(13)

k. = COG, (14)

k~ = ko& (15)

k,, = ko&., (16)

A,r = ~. (19)

With this technique, fast convergence for the difference
integral can be obtained. As an example, Fig. 2 shows a
comparison of three integrands, A~fl, D~., and Am. + D~.,
used in the computation of self impedance of a triangular
subdomain function with two joined symmetric 450 isos-
celes triangles. It is observed that the convergence of the
integral for the imaginary part of D~,, is improved by the
order of A*when compared to Am. + D~.. The real parts
of all the integrands, which result from the loss due to
radiation, are nonzero for only a finite range. A singular-
ity appears in the imaginary part of the integrand D~.. It
is due to a surface-wave pole whose residue contribution
in the integration represents the surface-wave radiation.
In this analysis, we calculate both asymptotic and differ-
ence integrals very efficiently. The numerical techniques
employed for both integrals are further discussed below.

B. Space-Domain Treatment of the Asymptotic Integral

The asymptotic integral in (8) represents tJhe mutual
impedance betw~en the expansion function f. and the
testing function f’n in an infinite homogeneous medium
with permittivity ~h. It can be expressed in the space do-
main as

- V$[v,gh(;, ~ ‘)]n(F’)]d’ ds (20)

where

–jOJpo exp [–jkl,l 1 – 7‘ 1]
gk(?,7’)=—

41T 1; - 7’I “ ’21)

Equation (21) is proportional to the scalar potential
Green’s function in the same homogeneous medium. 7
and 7‘ are position vectors of the testing point (x, y) and
the source point (.x’, y‘ ) respectively. It should be noted
that g(; , 7‘) exhibits a 1/ / ; – 7‘ I singularity as 7 ~
7‘. With the application of operator V,yV,on gk(7, 7‘ ),

f =20GHz k *
40mil

07

-0.3 I
o 5 10 15 20 25

A/k.

(a)

1.2 , I

0.8 I — Amn + Dm. :1

-1,2 I I

0.0 0.5 1.0 1.5 2.0 2.5

A/k.

(b)
Fig. 2. Comparison of (a) imaginary part (b) real part of three integrands

used in the self impedance calculation, as a function of real A.

a higher order singularity appears in the integrand of the
second integral of (20) which makes the numerical eval-
uation of the integral very difficult when the testing points
are close to the source points. However, this difficulty can
be alleviated if one of the gradients is transferred to act
on (.x’, y‘) instead of (x, y). For the scalar potential
Green’s function in a homogeneous medium; the follow-
ing identity is obvious:

V,,gh(;,7’) = –v:g~(;,?’). (22)

At this point it is convenient to employ a surfac~ vector
calculus identity [22] along with the property 1 of fP, Both
gradients on g~(7, 7‘ ) with respect to (x, y) and (x’, y‘ )
respectively can be transferred to act on the current ex-
pansion functions. As a result, (20) can be rewritten as

In general, the surface divergence of ~. can be easily de-
rived from (2). It is a constant given as

.[--

ln

A;’
x, y in T;

v,“jn(x, y) = -+, x, y in T; (24)
n

o, otherwise.
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After substituting (24) into (23), numerical computation
of (23) is greatly simplified. Rao et al. [15] have devel-
oped an efficient method to evaluate this reaction integral
using normalized area coordinates. The singularity within
g},(1, 7‘ ) can be extracted to yield a smooth function.
Then the integration of the integrand using this smooth
function over the testing triangle can be approximated well
by the value of integrand at the triangle centroid times the
area of triangle, while the integration associated with the
singular term can be evaluated in closed form [23]. This
singularity extraction technique allows the double surface
integrals to be reduced to single surface integrals which
may be numerically calculated by a quadrature technique
appropriate for triangular domains [24].

C. Spectral-Domain Numerical Evaluation of the
Difference Integral

Due to the rapid decay of D~.(A) as A ~ m, the infinite
integration range of (9) may be truncated to (O, A). Th~
uppsr limit A must be chosen large enough to satisfy G
= ~ for h > A, which can result from

~=-=~,=A ‘(25)

and

tanh Ah = coth Ah = 1. (26)

From (25) and (26), it can be concluded that the deter-
mination of A depends on the dielectric constant and elec-
trical thickness of the substrate. For a smaller dielectric
constant or electrically thicker substrates, A/k. may be
chosen smaller to reduce numerical expense in evaluation
of the difference integral. Moreover, D,,,,,(X) contains all
the singularities, namely the surface wave poles, over the
h domain. One way of performing the integration from O
to A is to deform the contour above the real axis where
the integrand is well behaved [25]. This method is partic-
ularly useful in a multi-layered structure because knowl-
edge of individual pole locations is not required. The
evaluation of the difference integral can be considered as
the key contribution from the multi-layered structure to
each impedance matrix element. It includes the surface-
wave radiation and part of the space-wave.

Due to the fact that the difference integral is evaluated
in the spectral domain with an integrand equivalent to
multiplication of the spectral-domain dyadic Green’s
function and the Fourier transforms of the basis functions,
many advantageous numerical schemes can be exploited.
First of all, the Green’s function depends on the material
parameters such as the dielectric constant and thickness,
while the basis functions depend on the microstrip param-
eters such as microstrip dimension and discontinuities.
Therefore, one can consider the programming for the
spectral-domain dyadic Green’s function and the Fourier
transforms of the basis functions as two independent black
boxes. Any change in parameters affects only one box
without affecting the numerical integration scheme. For
instance, we extend our previous work [11] which used a
combination of piecewise sinusoidal and pulse functions

(rectangular subdomain functions) to model any irregular
rectangularly-shaped microstrip discontinuity to the cur-
rent work using triangular subdomain functions to model
arbitrarily-shaped microstrip discontinuities, Since both
rectangular and triangular subdomain functions in the
space domain correspond to similar, broad and smoothly-
behaved spectra in the spectral domain, most of the nu-
merical procedure can be repeated with the exception of
substituting a new Fourier transform in place of the rec-
tangular basis functions. Thus, the choice of basis func-
tions in the spectral-domain technique is very flexible.
Unlike the spectral-domain method, the spatial convolu-
tion of the Green’s function and basis functions is inti-
mately related to the shape of the basis function domains.
Any change of Ibasis function implies a completely differ-
ent numerical development in the space domain.

The spectral-domain difference integral has been re-
duced to a double finite integral with a well-behaved in-
tegrand. We may further reduce CPU time by employing
some special numerical schemes developed in the spectral
domain, These schemes are described as follows.

C. 1 Separation of Spectral Variables for the Spectral-
Domain Dyadic Green’s Functions: The differenc~be-
tween Qe spectral-domain dyadic Green’s functions G (A,
0) and G.(X, 0) lmay be written as a summation of products
of functions
Thus

=
G(A, 6) –

where

which contain one spectral variable only.

(27)

z’

6(0) =

10101’

COS28 cos 0 sin 0

cos 6 sin 0 sinz 0

(28)

, (29)

and

– A2 + A2
g~(h) = —

ho + & coth A,rh 2~~eh

A2A~(Er– 1)

+ & + h,. coth A,Fh)(GAO + A,. tanh A,ph)”

(31)

From (27)-(3 1), it can be seen that~he ~athematically
complicated functions gl and g? in G – G. = 6 inde-
pendent and can be left out of the inner integral. Hence,
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the difference integral in (9) may be written as

“ };(A,8) dd dh. (32)

The most numerically intensive calculation (almost 90%
of the CPU time) in computing (32) is the numerical sam-
pling of the integrands of the inner integrations over both
A and O domains. However, one Lealizes_that upon close
inspection, the dyadic functions ~ and e(~) in these in-
tegrands are independent of any material parameters. In
addition, the inner integrations in (32) are frequency in-
dependent, assuming (25) and (26) are satisfied. Hence,
without changing the expansion and testing functions, we
can save a great amount of CPU time by computing the
inner integrations only once for various material param-
eters or different frequencies.

C.2 Translation of Basis Functions: In most practical
circuit applications, the shape of a microstrip junction re-
mains quite regular such that only a few types of trian-
gular subdomain functions are required to model an entire
junction. For instance, Fig. 3 shows a grid structure which
can model a microstrip junction whose boundaty edge
slopes are restricted to 00, 900 and tan-1 (sY/sx ). It can
be seen that only 3 different geometries of basis functions,

~&, ~~~, and ~~~ are required to create the grid. Integer
subscripts p and q herein identify the position of each ex-
pansion function. The translation relation for the i th type
basis function is given as

1;,(4Y) = IL@ – ps., y – C@. (33)

It is a well-known property that the translation of a func-
tion in the space domain represents a phase shift of the
function in the spectral domain. Thus

.RNG’q =.k(kx,q) #’P”+ &/sd (34)

By employing (34) in (32), it can be seen that t~e, differ-
ence integral inv~lving the expansion function f ~q, and
testing function ~~q depends only on their relative posi-
tion (u, v) = (p’ – p, q’ – q). In addition, for the dif-
ference integrals associated with two different relative po-
sition vectors, the integrands are the same except for a
phase shift factor. Therefore, it is numerically efficient to
compute and store the values of the difference integrals as
a function of the relative position indices u and v. As a
result, a data set for all the possible impedance elements
between any j th type expansion functions and i th type
testing functions inside the grid is constructed and ex-
pressed as

Zij(U, V) = Zfi(U, V) + Z~(U, 0). (35)

(0,0) L-
Y

A, F31 ~,,
x

Fig. 3. Grid structure using three different types of triangular subdomain
expansion functions.

After employing reciprocity, the following redundancies
of impedance elements can be found:

Zij(U, V) = Zji(–U, ‘V) (36)

IV. EVALUATION OF RADIATION AND SURFACE-WAVE

LOSSES

Since radiation and surface waves are unavoidable
physical effects for open microstrip discontinuities, a gen-
eralized method to rigorously determine both losses can
be developed in the spectral domain [14]. Generally
speaking, the method investigates the radiation loss by
performing the surface integral of the Poynting vector as-
sociated with the radiated space waves in the direction (2)
normal to the substrate. The integration plane is chosen
as an infinite plane (denoted by Z) which is parallel and
above the plane of discontinuities, Thus, the surface in-
tegral for radiation loss is given as

P,.~ = ~ Re
!1

(~,(~) X ii;(;)) “ ~dxdy (37)

z
where E, and H, denote the radiated electric and magnetic
fields in free space, respectively. For the surface-wave
loss, with the specific characteristics that surface waves
propagate along the surface, the surface-wave loss can be
found by integrating the Poynting vector over a cylinder
of large radius p with height extending from the ground
plane to infinity. The surface integral for surface-wave
loss is given as

(38)

wher- su~script i identifies the substrate or the air region
and E~i>H,i denote the surface wave electric and magnetic ‘
fields respectively. From [14], the integration in (37) over
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the xy plane can be converted into an integration over the
kXkYplane such that the spectral-domain expressions for
all the field components can be utilized. Moreover, the
integration in (38) with respect to spatial angular variable
r$ can be performed in the /3domain while the integration
with respect to z can be evaluated in closed form. The
advantage of using spectral-domain field expressions is
that the spectra for both radiated space waves and surface
waves are finite. The spectram for the radiated space
waves must satisfy k: + k; < k; which corresponds to a
range within a circle of radius k.. For the surface waves,
the spectrum corresponds to circles with radii equal to the
surface-wave poles AP,p = 1, 2, “ “ “. Due to the finite
spectra, the spectral-domain surface integrals for both
losses can be accurately calculated. Additionally, only in
the spectral domain may the specific propagating charac-
teristics for both radiated space waves and surface waves
be so clearly delineated.

V. NUMERICAL RESULTS AND DISCUSSION

In this paper, all the numerical computations have been
performed on an IBM 9000 mainframe system. As an ex-
ample, we constructed a grid structure as shown in Fig. 3
for the case SX= SY= 4 niil on an alumina substrate (e,
= 9.9) with thickness h = 25 roil. Six data bases were
set up to represent six different kinds of matrix elements
(Zij, ij = 11, 12, 13,22,23, 33). Each data base contains
ten data sets associated with ten sampling frequencies
within the range 6 to 24 GHz. In each data set, the indices
u, v vary from – 50 to 50 to generate a grid with 100 x

100 cells. The typical computer time for a data base is
approximately 4 minutes. The spectral-domain evaluation
of the difference integrals takes about 40% of the total
computer time. The grid structure in Fig. 3, which con-
sists of three different types of triangular subdomain func-
tions, can model any microstrip discontinuity whose
boundary is restricted to having at most 3 unique slopes.
In general, for more complicated geometrical configura-
tions with n (n a 3) different boundary slopes, (2n – 3)
different types of triangular elements are required. This
implies that (2n2 – 5n + 3) data bases need to be set up.
Therefore, for modeling arbitrarily-shaped discontinuities
with a large number of boundary slopes, nonuniform tri-
angular elements will be preferred.

A. Open-End and Mitered Open-End Discontinuities

To demonstrate the numerical accuracy of this analysis,
the phase term of the reflection coefficient calculated from
an open end (shown in Fig. 4) has been compared with
the measurements in [26]. Fig. 5 shows the comparison
and convergence as the size of the basis functions re-
duces. It can be seen that excellent agreement can be
achieved for the case s, = 2 mil and SY= 4 mil. The
difference from the measurements is less than 0.50 over
the frequency range from 6 to 24 GHz.

From an equivalent circuit point of view, a microstrip
open end may be modeled as an ideal transmission line
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open end

7mitered open end 1

+--+
al

Ref. plane —!

Fig. 4. The geometry of open-end and mitered open-end discontinuities.

0r~

“c=
S.=6mil

L S==4mil,.

\

Sz=2mil

2mil.— Thk theory

Y
s==:

- Measurementsin [26]

.4” L~
4081012 14 16 18 20 22 24 26

Frequency ( GHz )

Fig. 5. Phase of S1, for an open end (c, = 9.9, w = 24 roil, h = 25 roil,
Cy = 4 roil).

terminated with a lumped parasitic capacitance. This ca-
pacitance may be reduced by properly contouring the con-
ductor in the vicinity of the open end. In this paper, an
open end with a~simple miter (shown in Fig. 4) is studied.
Fig. 6 shows the comparison of two open ends mitered at
different angles to the open end without a miter. It can be
seen that both open ends with miters are quite successful
at reducing the end effects. However, among these three
cases, the magnitude of the reflection coefficients calcu-
lated is almost the same. In Fig. 7 we plot the ratio of
both radiation and surface-wave losses to the incident
power as a function of frequency for all three cases. No
difference due to geometry can be observed at frequencies
up to 24 GHz. Fig. 8 shows a typical example of the mag-
nitude of the electric surface currents on a mitered open-
end discontinuity. These surface current plots demon-
strate the edge singularity in the electric current distribu-
tion in addition to the typical discretizations associated
with the discontinuity in the moment method procedure.
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Fig. 6. Phase of ,S1, for an open end with a simple miter (e. = 9.9, w =
24 roil, h = 25 roil).
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Fig. 7. Power losses versus frequpncy for all cases in Fig. 6.

B. Right-Angle and Mitered Bend Discontinuities

The improvements provided by geometrical modifica-
tion to the outer portion of the right-angle bend with a
450 miter (shown in Fig. 9) are investigated. Fig. 10
shows the normalized susceptance for both right-angle and
mitered bend discontinuities as a functicm of frequent y.
As expected, the mitered bend has a smaller susceptance
than the right-angle bend over a wide frequency range of
interest. Fig. 11 shows the normalized conductance which
results from the radiation and surface-wave losses at the
junctions. It can be seen that the mitered bend not only
reduces the susceptance but also lowers the losses. Fig.
12 shows the normalized electric length for both discon-
tinuities. Comparison of numerical data with measure-

Fig. 8. Magnitude of electric surface currents on a mitered open-end dis-
continuity (E, = 9.9, w = 24 roil, h = 25 tnil, a = 8 roil, b = 8 roil, ~ =
24 G~z)

_ mitered bend
I ... ... ... ... ... ... ... ... ...

.. ‘...“..““:””””l,.::”,j.,.:,“,:.,.:~.,.:,, ~

,,. ..,.::’,;.,.::”,j: :.,., :.,.:I -. . . . . . . . . Ref. plane

p-:-q

Fig. 9, The geometry of right-angle and mitered bend discontinuities.

ments [27] for susceptance and electric length shows ex-
cellent agreement.

Another comparison for both discontinuities on an al-
umina substrate is shown in Fig. 13. Again, the mitered
bend has a smaller reflection coefficient than the right-
angle bend. The losses due to radiation and surface waves
under the same case are shown in Fig. 14, where we can
see that the mitered bend reduces both types of loss. Fig.
15 shows the magnitude of the electric surface currents
along with the discretizations for a typical mitered bend
discontinuity.
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Fig. 10. Frequency dependence of normahzed susceptance of right-angle
bend and mitered bend discontinu]ties (c, = 10.8, w = 4.572 mm, h =
5.08 mm).
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Fig. 11. Frequency dependence of normalized conductance of right-angle
bend and mitered bend discontinuities (E. = 10.8, w = 4.572 mm, h =

5.08 mm).
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Fig. 12. Frequency dependence of normalized electric length of right-an-
gle bend and mitered bend dlscontinuities (c, = 10.8, w = 4.572 mm, h
= 5.08 mm).
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Fig. 13. Magnitude of S parameters of right-angle and mitered bend dis-
continuities (e, = 9.9, w = 24 roil, h = 25 roll).
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Fig. 14. Power 10SSCSversus frequency for right-angle and mitered bend
discontinuities.

C. Basic and Mitered T-Junction Discontinuities

For compensation of discontinuity reactance of a basic
T junction, the removal ofa450 isosceles triangle is con-
sidered. Both discontinuities, basic and mitered T junc-
tions, are shown in Fig. 16. The magnitude of the scat-
tering parameters for both discontinuities is shown in Fig.
17, where the comparison with the t-neasured results in
[11] ‘for the case of a, basic T junction shows excellent
agreement. It is observed that a mitered T junction has
smaller magnitude of S33 than a basic T junction. This
phenomenon is even more pronounced at higher frequen-
cies. Finally, Fig. 18 shows the magnitude of electric sur-
face currents on a mitered T junction when the micro-
stripline attached to port #3 is excited.
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Fig. 15. Magnitude of electric surface currents on a mitered bend discon-
tinuity (E, = 9.9, w = 24 roil, h = 25 roil, ~= 24 GHz).

+-.1

#3

Fig. 16. The geometry of basic and mitered T junctions.
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— Mitered T junction
-. ---- Basic Tjunction

oMeasurements for basic T junction in [11]

-.
4 i 12 16 20 24

Frequency (GHz)

Fig. 17. Magnitude of S parameters of basic and mitered T junctions (e,
=9.9, w=24mil, h =25mil).

VI. CONCLUSIONS

Afull-wave spectral-domain analysis using Galerkin’s
method with triangular sub-domain basis functions has
been found to be a very accurate method to analyze com-
pensated microstrip discontinuities. Several examples
were investigated including compensation of open-end,

Fig. 18. Magnitude of electric surface currents on a mitered T junction (e,
= 9.9, w = 24 roil, k = 25 roil, ~= 24 GHz).

bend, and T-junction discontinuities. This work has dem-
onstrated the concept of a grid structure and a data base
for storage of impedance matrix elements from which
many different geometries may be analyzed.

Radiation and surface-wave losses for the mitered open
end and mitered bend were also examined, In the cases
studied, mitering has no noticeable effects on the losses
associated with an open end, but these losses are slightly
reduced for a mitered bend. Calculated S parameters and
equivalent circuit values were verified by comparison with
available measured data for some cases. These compari-
sons showed excellent agreement.
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